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ABSTRACT

Importance sampling is one of the classical variance reduction techniques for increasing

the efficiency of Monte Carlo algorithms for estimating integrals. The basic idea is to

replace the original random mechanism in the simulation by a new one and at the same

time modify the function being integrated. In this paper the idea is extended to problems

arising in the simulation of stochastic systems. Discrete-time Markov chains, continuous-

time Markov chains, and generalized semi-Markov processes are covered. Applications are

given to a G1/G/l queueing problem and response surface estimation. Computation of

the theoretical moments arising in importance sampling is discussed and some numerical

examples given.
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I. INTRODUCTION

The use of importance sampling has long been recognized as a useful technique for

increasing the efficiency of Monte Carlo algorithms for numerically evaluating integrals.

Given the goal of calculating I = f f*,(z)dz, importance sampling involves choosing a

probability density g(.) and observing that I can be represented as

I = E{f(X)/g(X)} (1)

where X is a r.v. with density g. One then samples repeatedly from the density g, and

estimates I by the sample mean of the observations f(X)/g(X). The term importance

sampling derives from the fact that one can choose g to be large in the regions that are most

important, namely where IfI is largest. Substantial efficiency increases over conventional

Monte Carlo are possible when this technique is properly implemented.
Our purpose in this paper is to illustrate how the method generalizes to stochastic

simulations, to develop some of the basic theory relevant to this applications setting, and

to briefly describe some of the promising research currently underway in the area. The
rest of the paper is organized as follows. As should be clear from the above discussion,

the critical element of importance sampling is the choice of the density g. We therefore
discuss methods for constructing suitable "densities" in the context of discrete-time Markov

chains (Section 2), continuous-time Ma.rkov chains (Section 3), and general discrete-event

stochastic systems (Section 4). Section 5 gives an abstract overview of the construction,
and relates the importance sampling density g to the likelihood ratio of statistics and the
Radon-Nikodym derivative of measure-theoretic probability. Section 6 applies the ideas of

Section 5 to the processes discussed in Sections 2-4. In Section 7 we discuss the problem
of selecting the optimal density g over a suitably defined parametric family of importance

sampling densities. An application of this idea to the GI/G/1 queue is given. Section 8
deals with the problem of response surface estimation. Here it is shown that sometimes the

simulator can estimate an expectation depending on a parameter by only simulating at one

value of the parameter. Finally, in Section 9 we discuss the computation of a number of the

moments arising in importance sampling and give a numerical example of the technique.

2. IMPORTANCE SAMPLING FOR DISCRETE-TIME MARKOV CHAINS

Suppose that we are assigned the following discrete-time Markov chain simulation

problem:



problem:

Given a transition matrix P, initial distribution i, and real-valued function f,

calculate

tEP f (X0. Xi....

where X = {X.: n > o) is the Markov chain associated with P and p. (Ep(.) denotes

the expectation on the path space of X associated with P and ,.)

We will now show how to construct an analogue to the importance sampling density g in

this problem context. Suppose we represent ; and P respectively as p = (p(i) : i E S) and

P = (P(ij) : i,j = S), where S = (0,1,...) is the state space of X. Then, if f(Xo, X1,...) =

f(Xo, X1 ,..., X.) (i.e. f depends on the trajectory of X only up to the deterministic time

n), it follows that

Epf(Xo,...,Xn) = f (io,....,$IA(N) I Plik,ik+l)). (2)
fl-0

Let g: $'+" -- R be a probability mass function (p.m.f.) on sn+ I with the property that

fli

A(io) r1 P(ik,i+ 1) > 0 implies g(io,.. -,in) > 0. (3)
k=O

(e.g. g(io .. . , in) = h(io) ... h(in) with h a strictly positive p.m.f. on S). By multiplying and

dividing appropriately in (2) (we need (3) to do this), we obtain

fl1

p(io) IIP(h,ik+i)-2=~k~ fgO--i) - -(io,..- , in,)
g° ..... '" 

(4)
fl1p(XO) i P(Xk, X.+I)

=REo(Xo...,X) go,..o9(Xo,... , n

when E,(.) is the expectation over trajectories X having p.m.f. g; formula (4) is the discrete-

time Markov chain analogue to (1).

By relation (4), a is representable as the expectation of a r.v. U taken with respect

to E,(.). This suggests that a may be estimated by repeatedly sampling the r.v. X =

(Xo,...,X.) from the p.m.f. g and forming a sample mean of the observations Ui = U(XJ) so

generated. To analyze the efficiency of the new estimator, consider a budget t representing
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the amount of computer time assigned to numerical evaluation of a. Then, if /, is a r.v.

denoting the amount of computer time required to generate UL,

Nr(t) = Pi: -(5) : +- +p <,} >
S0; - < t(5)

is the number of U,'s generated by time t. Thus, the estimator
17t)={ I +..(U .+ UN)); N(t) 1 (6)

0 : N(t) = 0

is the estimator available after t units of computational effort have been expended. By

appealing to Section 5 of Glynn and Whitt (1986), the following result is easily proved.

Theorem 1. If E,(U? + p8) < oo, then tl/2(CT(t) - a) =s a(g)N(0, 1) as t -. 00, where 02(g) =

E.01 v .a: U,.

Note that if we choose

0(i"'" 'i) = U(io),o" P(i,,i+,)
k=O

then the above importance sampling algorithm with g = reduces to the conventional

Monte Carlo procedure for calculating a. Thus, we obtain an improvement in efficiency by

using importance sampling p.m.f. g provided that o2(g) < a2(0).

Much of the previous literature on importance sampling assumes that Ee#1 is indepen-

dent of g; in this case, efficiency is maximized by reducing the variance vart fi to its minimal

level. Clearly, the assumption that the expected computational effort E,8, is insensitive

to g is especially unpalatable in this problem setting. In fact, we would typically expect

here that E,# 1 will be a major component of 02(g), particularly when g is a joint p.m.f. on

Sn+1 from which it is expensive to generate variates. However, it d=e seem reasonable to

expect that EP ft E#,81 when g is itself a Markov probability in S+, by which we mean

that there exists an initial distribution Y and transition matrices K1 such that
ft-I

9(io ....-,in) = &I(io). J K(ih,ik+,). (7)
kn0

Of course, in order that g satisfy (3), it is necessary that p.i) > 0 imply &,(i) > 0 and P(i, j) > 0

imply Kh (i, j) > 0.

The probability g is said to be time-homogeneous Markov if K. = K fori 2! 0. In this

case, a - ExI(Xo,... ,Xn)L.(PK), where Ex a E. with g given by (7) and

s,(Xo) h-K(Xk,X,+)(
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Note that to generate a r.v. X from the Markov probability g given by (7), we generate

Xo according to v and recursively generate the remaining X,'s from the transition matrices

K#. Thus, the effort required to generate I under such a Markov probability should be

roughly comparable to that required to generate I under P. However, because of the

particular simplicity of generating from time-homogeneous Markov probabilities, we shall

restrict our attention to this class of sampling "densities" g for the remainder of this section.

We now turn our attention to the class of estimation problems a = Epf(Xo,Xi,...)

for which there exists no integer n such that f(Xo,X,...) = f(XoXi,... ,Xn). This occurs,

for instance, when we wish to calculate a = EpT, when T = inf{n > 0 : X, e A); such

problems arise, for example, when it is necessary to calculate the expected time until a

buffer overflows in a manufacturing system. (Here, A is the set of states corresponding to

a buffer overflow.)

Suppose that f(Xo, X, .... ) =f (Xo,..., Xr) where T is a stopping time for the process X.

(A stopping time is a random time with the property that the event (T = n) is determined

completely by the history of (X,...,Xn); see p. 118 of Qinlar (1975) for details.) Our next

proposition shows that (8) extends in the natural way to estimating expectations of this

form.

Proposition 1. Suppose that Epif(Xo,..., XT)I < coo with T a stopping time. Then

Epf(Xo,...,Xr) = EKf(Xo,...,XT)LT(PK)

where
L, (P, K) '"X' P(X,, Xk+

= (Xo)) K (Xk,Xk+i)*

Proposition 1 shows that importance sampling extends easily to the case where f

depends on X up to a stopping time T. Efficiency increases are obtained by appropriately

choosing v and K, and then simulating X under initial distribution V and transition matrix

K; Proposition 1 is then used to construct the sample mean estimator.

We conclude this section with a description of how importance sampling extends to

steady-state estimation. We recall that the steady-state estimation problem requires cal-

culating a = Epf(Xo, Xi,...) where

f(Xo, X1,. )= im - h(Xh). (9)
n-0 n knO
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i.e. f(Xo, Xi,...) is the long-run average of (h(X,) : n _ O} for some function h. A naive

approach to calculating a would involve extending Proposition 1 to functions f defined

through (9). In other words, one might hope that

a= Ex I *E !> h(Xh)-L.(P,K), (10)

where L..(P,K) = lix,_.o L(P, K). However, it turns out that (10) is false in general, and so

we conclude that importance sampling can break down for functionals I which depend on

the infinite history of the process X = {X, : n > 0). Since this observation is an important

one, we offer an elementary demonstration that (10) is, in general, false. (In the language

of measure-theoretic probability, (10) breaks down because the measures on the infinite

path space of X associated with P and K are mutually singular; see Section 5 for more

details.)

Suppose that h is strictly positive and that X is an irreducible Markov chain on finite

state space S under transition matrix P. Clearly, a is then positive. We shall see, however,

that the right-hand side of (10) vanishes, unless P = K. To prove this, it suffices to show

that L..(P, K) = 0 under PK(-). (PK(.) is the probability corresponding to EK(.).) Clearly, the

result is immediate if P(i,j) vanishes when K(s,j) is positive, since the irreducibility and

finite state space guarantees that (X.,X.+1) will eventually visit such an (i,j) under PK().

Otherwise, observe that

L. ( P, K ) = U ( x°) "i "-x = O]kxkl

-y(Xo) n-c E

when 0(i,j) = log(P(i,j)/K(i,j)). But

n X, X, 1 p(i)K(i, j)0(i,j) (12)

PK a.s., where p = (p(i) i r S) are the stationary probabilities of K. By the strict concavity

of log(.),

p(i)K(i,j)log M, } < log (()P(itj) = 0

with strict inequality when the points P(i,j)/K(i,j) are distinct (i.e. P(i,j) $ K(i,j)). By

(12), f-- ,(Xk,X+,) - -oo and thus L,(P, K) = 0 by (11).

In spite of the above difficulty, it turns out that importance sampling can be applied

to the steady-state estimation problem. The idea is to use the regenerative structure



of X to reduce the infinite-horizon steady-state behavior to a finite-horizon analysis over

regenerative cycles. To be precise, for a given (but arbitrary) state i E S, let T(i)=

inf(n> 1 : X, = i4, and set
T(i)-1Y= E h(X.)

k=0

= lh(Xk)l
k=O

T(i).
It is well known that the steady-state mean of h can be expressed as a = Ep(YIXo = i }
/Ep{drXo = i. By observing that T is a stopping time and applying Proposition 1, we

obtain the following result.

Proposition 2. Suppose X is a positive recurrent irreducible Markov chain under transi-

tion matrix P. If Ep(k[Xo = i < oo, then

E-iM I- =EK{YL,(P,K)Xo = i)
Ep nir I h(Xk)= EK(rL,(P,K)IXo=i}

A second representation for the steady-state mean a can also be derived. Observe that

Y is expressed as a sum, and note that

E t Eh(Xe)Ln(P,K) =jEK j(X)=)=Xo)  , "I

It is easily verified that

EI n}(iX+ X 1---IX
E 3 K(X, X o,...,x} =1

and hence, it follows by conditioning on Xo,..., Xe that

EK {Fh(Xe)Ln(P3 K)} EK {tZh(Xe)Le(P K)}.

The above argument easily extends, as in the proof of Proposition 1, to stopping times T.

Applying the stopping time version to the regenerative representation of the steady-state

mean yields the following result.

Proposition 3. Suppose X is a positive recurrent irreducible Markov chain under transi-

tion matrix P. If Ep({klXo = i} < oo, then

Ep1 E hE {Z )L(P K)lXo =i

A-0 E { Le(P, K)Xo
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As a consequence of of Propositions 2 and 3, we see that the steady-state mean a can

be expressed as the ratio of two expectations; standard methods can then be applied to

estimate a. In particular, suppose {((YL),, (rL),) :n 1) is a sequence of i.i.d. replicates

of (YL,(PK), rL,(PK)) generated under PK(.). Then, the estimator ri(t) for a is the ratio

estimator, available after t time units of computation have been expended, of the sample

mean of (YL),'s to (rL),'s. Similarly, the ratio estimator r2(t) can be constructed from

Proposition 3. Let 6(1),,6(2) be the computation time required to generate the random

vectors (YL,(P, K), rL(P, K)), {Eo h(Xe)Le(P, K), o Le(P, K)), respectively, under PK(.).

The following result, which follows immediately from Section 5 of Glynn and Whitt (1986),

describes the rates of convergence of the two steady-state estimators.

Theorem 2. Suppose X is a positive recurrent irreducible Markov chain under transition

matrix P. If EK{( 2 + ,r2)L2IXO = 4) < co and EK(P(1) + P(2)) < co, then

tl/2 (r,(t) - a) =s a N(O, 1)

as t -. co, for i = 1, 2, where

a2 EK{(1)IXo = 4} EK{(Y - ar)2 L2,(P,K)Xo = i}/(EK{rL,(P,K) IXo i)2

EK ((h(Xe) - a)L,(P, K) IXo = i
v= E { fl(2)jX o = )em2

(E. L(P,KXo })

As in Theorem 1, confidence intervals for a follow easily from this central limit theorem.

Theorem 2 raises the question of which of the two steady-state estimators is more efficient.

Note that the proofs of Proposition 2 and 3 show that

EK{TL,(P,K),XO=if=EK L,(P.K)Xo=} = EP{rIXo= 0.

Thus, if p(l) is approximately equal to #(2) (which seems reasonable in most applications),

r2(t) is more efficient than rift) if (and only if)

{A (Z(h(X) -c.)Lg(PK)) IXO = } SEK {((h(XA.) - a)) L 2(P, K)IJXO = }. (13)

The choice of return state i is another natural question which arises in the regenerative

context. If one assumes that the computational effort equals r (this is a common assump-

tion in regenerative analysis), then it is well known (see Crane and Iglehart (1975)) that

7



the choice of return state does not affect the efficiency parameter 0
2 when conven-

tional regenerative output analysis is used. On the other hand, the choice of return

state i d= have an effect on the asymptotic efficiency in the importance sampling

case currently under study here; an example illustrating this appears in Section 9.

Although we have no mathematical theory to guide the choice of return state, it

seems reasonable to employ the heuristic of choosing that state i with the shortest

expected return time under PK(-).

3. IMPORTANCE SAMPLING FOR CONTINUOUS-TIME MARKOV

CHAINS

In this section, we show how to extend the ideas of Section 2 to continuous-time

Markov chains. To be precise, given a non-explosive continuous-time Markov chain

X = {X(t) : t _ 01 with (conservative) generator Q and initial distribution p, our goal

is to apply importance sampling to the estimation of

a = EQf(X),

where f is real-valued. (EQ(.) corresponds to the expectation on the path-space of

X associated with using generator Q, when initialized with ,).

As in Section 2, it is possible to do importance sampling in which the sampling

distribution does not correspond to a continuous-time Markov chain. However, as

argued in Section 2, it seems reasonable to rqstrict ourselves to using sampling

distributions which are themselves Markov, and we shall do so here.

The simulation of a continuous-time Markov chain generally proceeds on the

time scale of state transitions. By this, we mean that any event-driven algorithm

for generating the sample path of such a process will evolve iteratively by determin-

ing the "next" state and corresponding holding time for that state. Thus, after n

iterations of the algorithm, we have simulated the process up to time S;, where S, is

the instant at which the chain enters the (n+ 1)'st state. In other words, the natural

time scale for discrete-event simulation of such a chain is the time scale correspond-

ing to (S, : n > 0). As a consequence, we shall initially concentrate on studying

estimation problems for which f(X) can be expressed as f(X(t) 0 K t < S,) for some

nf >0. Note that such a function f can be re-expressed as (Uo, Vo,U 1 ,V ... ,UV.),
where U is the i'th state visited by the chain and v is the time spent in that state.
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Recall that {U.,: n _ 0) is a discrete-time Markov chain with transition matrix R defined

by R(i,j) = Q(i,j)/q(i) for i 96 " and R(i,i) = 0, where q(i) = -Q(i,i). Furthermore, conditional

on {U, : n > 0), the V,'s are independent exponential r.v.'s for which the (conditional) mean

of v. is 1/q(U}. From these observations, it is immediate that

f= EQI(x(t) : < t < S,)

= EQ(UO, V,..., U.-,Vn)

=WE Ia .. f (uOvo, .... ,u, .,,4u.) R(u,, us+j) fl q(u,) exp(-q(u,)ti)dvo ... dv,,

Loa . O j uO 9 .... U., V ) II Q(u-, U,.,.) exp F q(ui)v' dvO,...,dv.

Io ... 3j=O j=O

(14)

Suppose that we wish to estimate a by simulating a chain with a different initial distribution

-1 and/or generator A. We assume that A is non-explosive and conservative and that the

analogue of condition (3) holds:

,s(i) > 0 implies -I(i) > 0 and
(15)

Q(i, j) #0 implies A(i,j) y 0.

From (14), it is evident that an appropriate multiplication and division yields

a = EA(Uo, Vo,...,U,,V)L,,(Q,A)

= EAf(X(t) : 0 _< t < S,,)L. (Q, A)

where

L,(Q, A) = ;(Uo) 2I- Q(UjU+ 1 ) exp (aX(s)) - q(X(s))ds (16)
7(U0) A(U,,U,+) - J

and a(i) = -A(i,i). Hence, a can be estimated via importance sampling. We simulate the

chain under generator A, as initialized by -f, up to time S.. At the end of the run, the

quantity f(X(t) : 0 < t < S)Ln(Q, A) is calculated. By independently replicating these runs

many times, we can estimate a by a sample mean of the f(X(t) : 0 S t < S)}L,(Q,A)'s so

obtained.

As in Section 2, we now wish to extend our importance sampling methodology to

more general functions f(X). Suppose that T is a stopping time relative to the sequence

((U,, V,) k > 0}, by which we mean that the event (T = n) is completely determined by

(Uo,Vo),...,(U ,V,). The next result follows from (16) in a manner similar to the way in

which Proposition 1 followed from (8).



Theorem 3. If EQIf(X(t) : 0 5 t < *1 )I < oo with T a (finite-valued) stopping time, then

EQI(X(t) :0:5 t < ST) = EAf(X(t) :0:5 t < ST)LT(Q, A)

where
LT-(Q, A (UO) T- Q(U, U+) exp ((x()) - q(X(s)))da)

A) y(UO) H A(Ui, Uj, (f

An important application of this stopping time result occurs when one is required to

estimate the transient behavior of the chain X up to a deterministic time w. In other

words, suppose that f(X) = f(X(t) : 0 < t < w), where w is deterministic. To simulate the

process X up to time w requires T(w) iterations of the event-scheduling algorithm, where
T(wo) = inf (n >: 0 : So +""- + $n 2! w). Clearly, f (X(t) : 0 <5 t <5 w,) = &((t) : 0 < t < ST(,,,)) w.p.l.

(Equality may not hold if ST(.) = w, but this happens with zero probability.), and hence

EqI.f(X(t) : 0 < t < w) = EAf(X(t) : 0:_ t 5 w)LT(w) (Q, A).

Formulas similar to this appear on p. 166 of Br6maud (1981), where they were derived

using martingale representations of continuous-time Markov chains.

We turn now to the steady-state analysis of continuous-time chains. As in the discrete-

time setting of Section 2, we exploit regenerative structure. For a given (arbitrary) state

in S, let r = inf(n > 1: Un = i), j,
Y = h(X(s))ds

S= f lh(X(,))lds.

An analysis similar to that used to obtain Proposition 2 shows that if X is irreducible

positive recurrent and if EQ{kIX(0) = i) < 0o, then

J h(X(a))ds = EA{YL,(Q, A)fX(O) = i}
t a* t Jo EA{SL,(Q,A)IX(O) = (17

Although (17) could be used directly to obtain the steady-state means, such an algorithm

would be inefficient. In particular, one can apply conditional Monte Carlo, in the form

of discrete-time conversion (see also Fox and Glynn (1986)), to (17), thereby yielding the

expression

)h"h£ s - ((u }+ XrO

Eq Umr o ))d =EA k=0 k j=O (18)
t fEA RU-j l- (u,,ul+i) .

10



where R'(i,j) = A(i,j)/a(i) for i #0 and R'(i,i) = 0. The principle of conditional Monte Carlo

guarantees that a ratio estimator based on (18) will have a lower variance than one based

on (17); a central limit theorem for this estimator similar to that appearing in Theorem 2

can easily be derived. An alternative derivation of (18) rests on the well-known fact that

ft-I

tERz lira , tq- ;
'VQ U-M-- J h(X(a))ds A;.-0 -:

ERlin jF,,,rh
n_0 h=O

Proposition 2 can then be applied to the numerator and denominator of the right-hand

side to obtain (18).

To conclude this section, we note that the r.v.'s appearing on the right-hand side

depend only on the embedded discrete-time chain (Ut: n > 01; this chain can be simulated

under PA(.) by using the transition matrix R1. Thus, if (18) is used to estimate the steady-

state mean, no exponential variates need be generated.

4. IMPORTANCE SAMPLING FOR GENERALIZED SEMI-MARKOV

PROCESSES

In the preceding two sections, we have shown how importance sampling applies to

discrete and continuous-time Markov chains. We shall now show how importance sampling

applies to general discrete-event simulations. As in Section 3, we shall restrict attention

to sampling distributions which themselves correspond to discrete-event simulations.

A mathematical framework is convenient for the purposes of this discussion. In particu-

lar, we shall model a discrete-event system as a generalized semi-Markov process (GSMP).

As described in Glynn (1983), a GSMP is basically a mathematical formalization of a

discrete-event simulation; the process is driven by an event-scheduling algorithm, in ex-

actly the same way as is a discrete-event system.

To be precise, let S be a subset of the non-negative integers representing the state

space of the GSMP. The GSMP also requires specification of a second finite integer-valued

set E; E corresponds to the set of all possible events that can initiate a state transition.

For example, in the single-server queue, E consists of two events, one each for the arrival

and departure processes.

To understand the probabilistic dynamics of a GSMP, recall that in order to simulate

a discrete-event system, we need to schedule each event possible in the state currently

11



occupied; we can view the event schedule as being represented by a set of clocks. So, for

each event e e E(s) (the set of events active in state s e S), suppose that r(a, e) is the non-

negative rate at which the clock corresponding to event e runs down in state a; we assume

that max(r(., e) : e c E(e)) > 0 for each state a E S (i.e. at least one clock has a positive

speed) and max{r(s, e) : e E E(s), 8 E S) < o. Under this assumption, a clock will eventually

run down to zero, thereby initiating a state transition. If two or more clocks run down to

zero simultaneously, the clock with the minimal index e is regarded as the "trigger" event.

The next state s' is then chosen with probability p(a';s,e*), where a was the previous state

and event e" E E(3) was the event that triggered the transition there. In state a', the clocks

in state a that are still active in a' continue to run down (now according to rates r(a', e));

the set of these "old" clocks is the set O(s', s, e*) = E(a')n (E(s)- {e)). In general, when state

a' is entered, new events (represented by the set N(',s,e*) = E(s') - O(a',s,e)) need to be

scheduled. The clock on event e : N(', a, e*) is set (independently of the past) according

to a probability distribution F(.;a', e,s,e*); we require that F(O; s', e, a, e*) = 0 (clocks are set

at strictly positive values). The clocks in E(a') are then allowed to run down, and another

state transition occurs; the above process is then repeated indefinitely. The state occupied

at time t will be denoted as X(t); the process {X(t) - t _ 0) is then the desired GSMP. It

should be clear that the above description of a GSMP closely mimics the evolution of a

discrete-event system. For more details on the specification of a GSMP, see Burman (1981)

or Whitt (1980).

As in Section 3, it is convenient to view the GSMP on a time-scale which is natural to

the simulator, namely {S : n _ 01, where S. is the instant at which the GSMP enters the

(n+ 1)'st state visited. Let {(A,,C,) : n > 0) be the sequence in which A. represents the ,t'th

state visited by the GSMP and C. = (C.(e) : e E E) is the vector of clock readings at the

instant of entry into state An. (If a clock is inactive in state An, the clock is set to +oo.)

Clearly, the trigger event e, in An is a function of A. and C, namely

e= = min(e' E K: C(e')/r(A., e ') = min(C,,(e)/r(An,,e) : e EE)).

Note that S, = Eno C(e:)/r(AA, e;). A little thought then shows that if .f(X(t) : t > 0) =

f(X(t) : 0 < t < S,), f can be represented as I(A0, Co,..., An, ). A further simplification is

possible, however. Observe that CR = Cn (Ao, ! 0,..., A, Cn) (with c. (.) deterministic), where

C, () : e c E) is the vector of "new" clock readings generated at the n'th transition,
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namely

go= Coe) *E(Ao)
- +00, e 0E(A0 )

and

0= 0+0, e 0 N(A, A.-,, e._)

for n> 1. We conclude that there exists a (deterministic) function f such that
f(X(t) : 0 < t < Sn) = f(AO, Co, ... , A,, ,). This representation of f will now be used to

develop importance sampling methodology for a GSMP estimation problem of the form

a = EFf(X(t) : 0< t < Sn). (19)

(EF(.) is the expectation on the path space of the GSMP associated with transition probabil-

ity p(a'; s, ej}, clock-setting distributions F(-; a', e, s, co), and initial distribution p; we assume

that the initial distribution takes the form

P{Ao = s,Co(c) C dz.,e E E(s)} = p(a) [J F(dx.,c).
ee:E( *)

As one might expect from our discussion of discrete and continuous-time chains, an

analogue to conditions (3) and (15) will be needed. Suppose that we wish to use a sampling

distribution which corresponds to a GSMP having identical state space S, event space
E, rates r(s, e), but possessing (possibly) different transition probabilities q(s', e, a*), clock-

setting distributions H(.; a', e, a, e) and initial distribution -1 (-y is characterized by initial

state probability -y(s) and initial clock-setting distributions H(dx,, e).) The data of the new

GSMP must satisfy:

1.) p(,'; s, e°) > 0 implies q(a'; a, e) > 0 and p(s) > 0 implies y(.) > 0.

2.) there exists functions k(.; a', e, a, e*) and k(., e) such that

F(dz; s', e, a, e*) = k(z; a', e, a, e*)H(dz; s', e, a, e*)

F(dz, e) = k(z, e)H(dz, a).
Since the first condition is self-explanatory, we concentrate on explaining the second con-

dition above. It basically says that wherever H assigns no mass (i.e. H(dx) = 0), F must
assign no mass (F(dx) = 0). In the language of mathematical probability, F is said to be
absolutely continuous with respect to H. To gain a better understanding of this condition,

suppose that F and H both have densities that are positive everywhere. Then

k(z; We,s, a) = f (Z; 8' , a, O)
h(z; a', e, a, e')

k(z, e) = f(z, e)/h(z, a).

13



However, F need not have a density in order that condition 2) hold. In particular, suppose

that F assigns probability fk to the point 2k for k = 1, 2,.... If H assigns mass hk to the

same sequence, then

k(Zk; S',e, a, e') = fk/hk.

Mixed probability distributions, that contain both point masses and densities, can be

similarly handled.

We turn now to the application of importance sampling to the estimation problem

(19). As argued previously, f(X(t): 0 _ t <S S) = f(Ao,Co,.. .,Ann ), so

a = Erf (Ao, Co,.. ., AnCf)

- -f (aoCo,....anCn)(aO) I F(dco(e) 0
.... eEE(ao)

n-1 nt

= 1 p(aI+;aeN) J d e ' ' '

By multiplying and dividing appropriately in the above expression (we need 1) and 2)

above to avoid dividing by zero), we get

a=EH f(Ao, Cop..,tC) Ln (F, H)

E Hf(X(t): 0 < t < S)L. (F, H)

where
Ln( , H u(Ao) J1k C () p(Aj+ 1; Aj, e;)

( ( A) E--Ao)  1 (Co(e),e)17 q(A,+;Aj, e;)
n EE(Ao) =0 (0

*il II k(Cj(e); A",eAi, A ';- 1)
j=1 e4EN(A,,Ai_-1,0I_,)

and EH(.) is the expectation on the path space of X associated with the sampling distribu-

tion described above. The extension from deterministic n to stopping times T (i.e. (T = n}

is completely determined by (Ao,Co,... ,A,,,C).) is straightforward, thereby yielding our

next theorem.

Theorem 4. If EFI(X(t) : 0 _< t < *2.)I < 0o with T a (finite-valued) stopping time, then

Erf (X(t) : 0 < t < Sr) = Emf(X(t): 0 < t < ST)Lr(F, H)

where LT (F, H) is the r.v. obtained by substituting T into (20).
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As in the continuous-time chain setting, the most important application of the stopping

time version described above is to functions f of the form f(X) = f(X(t) : 0 < t <t w). Set

T(w) = inf{n > 0: S, > w), and note that T(w) is a stopping time. It follows that

Erf(X(t) : 0:< t <5 w) = EHf(X(t) : 0 < t < w)L(.)(F,H).

Thus, to apply importance sampling to computation of expectations of the form a=

EFI(X(t) : 0 < t :_ w), it suffices to simulate the GSMP under PH(.) up to the T(w)'th

transition. From the path so generated, one can easily recursively compute LT(,}(F, H),

thereby yielding the observation f(X(t) : 0 < t _ w)LT(w) (F, H). A sample mean consisting of

independent replicates of the chain is then a consistent estimator of a.

We turn now to a discussion of the application of importance sampling to steady-state

estimation of discrete-event simulations. To be precise, suppose that

f(X)= lim! 'fh(X(s))ds,
t-00 t Jo

where X is a GSMP. As discussed in Section 2 for discrete time chains, naive importance

sampling breaks down , in the sense that if one sets T = o in Theorem 4, the result

becomes false. In fact, we have been able to obtain an importance sampling estimator for

the steady-state mean of a GSMP only when the GSMP is regenerative.

To obtain regenerative structure, we assume that the GSMP hits a single state infinitely

often, by which we mean that there exists s0,aI E S, e0 E E(so) such that:

a) PF{(A., e,, A.+,) = (so, co, a,) infinitely often} = 1.

b) N(sj,so,eo) = E(s,).

The term "single state" refers to the fact that if E(so) = {eo}, then condition b) is automati-

cally fulfilled. By b), all the clocks in E(si) are reset, independently of the past, whenever s'

is entered from so by the triggering of event eo. If r = inf(n > 1 : (A.-1, e,, , A,.) = (so, eo, 3,)},

it is then immediate that S, is a regeneration time for X(). Note that the single-server

queue is a GSMP with single set (so = 0, eo = arrival event, s, = 1), so that the regenerative

structure of the G/G/1 queue follows as a special case of this discussion.

Letting Y = fo h(X(s))ds, Y = fo" Ih(X(s))Ids, standard regenerative analysis shows that

if EFY < 0o, then

1tE EHYL,(FH)
EF UMa ; h(X(s))ds = ~(22)ccHEH S, L,(2)
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where EH is the expectation on path space in which the initial distribution is given by

1) 1 1, H(., s) = H(.; sj, e, so, eo).

In fact, a second ratio formula for a involving the sampling distribution H can be

derived; this formula is the GSMP analogue of the discrete-time chain result obtained in

Proposition 3. Observe that on the event {r > },

EH l ,(A,+,;Aje;) k(C.+j(e);Aj+,,e, Aj,e*)IAoC Ao...,At, C, 1A,, e ( Aii ; ,., )

Since Y can be expressed as
v-i

h(X(a))d h(At)Ce(e;)/r(Ae, e;),

it follows, by conditioning the i'th summand of YL,(F, H) on A 0 , Co... , At, Ct, that

EH{YL(F, H)} = EH _ h(Ae)Ct(e*)Lt(F, H)/r(At, e) (23)

By setting h = 1 in (23), a similar formula for ESL,(F,H) is obtained. Thus, if EF(Y+S,) <

oo, we find that

•1t E Hf I -h(At)Ce(e;)Le(F, ff)/r(At, e;)

Ep Jim h(X(s))ds EH{ht= eLO )/(t ) (24)

EH {_Ce(e;)Le(F, H)/r(Ae,.)}

As a consequence of the ratio formulas (22) and (24), it is clear that the steady-state mean

a can be estimated by simulating replicates of either

(YL, ), S,L,(F,

or

h(AeCe(e;)L(F, H)/(A, ec), C d~e)Ld(F, H)/r(Ae, e))

under the sampling distribution PH(.). Let r1 (t), Z2(t) be the two corresponding ratio

estimators that are available after t units of computational effort have been expended,

and suppose #(1),,(2) are r.v.'s denoting the computational effort required for each ob-

servational pair. By applying the methods of Section 5 of Glynn and Whitt (1986), the

following central limit theorems follow.
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Theorem 5. If EH(P(1) +,6(2) + (y 2 + S@)14(F,H)) < 0, then

as t -. oo, for i = 1, 2, where

E(y- aS') 2 L2(f, )

£ - (EHSL,,)) 2

2I= EHB6(2). E" { (h(Al) - .. )C(e;)Lt(F, H)/r(A,, e;) /(EHS.L.(F, H))2

As in the discrete-time Markov chain case, the denominators of the above expressions

for a2 and a2 are both equal to (EFS,) 2. Then, if EHO() x EHP(2), Z2 is smaller than

£,i if the remaining expression in the numerator of ~2 is smaller than the corresponding

expression in u2. Again, as in the discrete-time chain case, we have no sufficient condition

guaranteeing that , < a2.

We conclude this section by illustrating that the estimators of this section are generally

easy to calculate. If Pr(.), PMr(-) correspond to G/G/I queues (with identical initial distribu-

tions) having interarrival distributions FA, HA and service distributions Fs, Hs respectively,

then

L =(FH) = kA(CA1)) 17 ks(C,(2))
AEL. e.

where A. = ( : j :n,S is an arrival epoch), A" = (1,...,n) - A,,, and kA(.), ks(-) are the

functions appearing in condition 2) of this section (kA for the arrival event, ks for the

departure event). Hence,

Ln (F, H) = {L.-j(FH)kA(Cn(1)), n~
1L._(FH)ks(Cn(2)), n EA'n.

This simple recursive structure of Ln(F, H) is typical of GSMP's.

5. IMPORTANCE SAMPLING: THE GENERAL THEORY

In the previous three sections, we have shown how to apply importance sampling to

a broad class of stochastic simulations. The idea is to find a sampling distribution from

which variates can be cheaply generated and for which the variance of the estimator is

reduced. In this section, we abstract the ideas of the previous sections with the hope that

the basic concepts underlying importance sampling will become more transparent.
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Given a sample space n (with corresponding o-field 37), suppose X is a real-valued r.v.

defined on nl for which we are required to calculate

a = EpX (25)

where Ep (.) corresponds to the expectation on n associated with the probability distribution

P. To define an appropriate sampling distribution Q for the estimation problem (25), we

need an analogue to the conditions above given by (3) and (15) (as well as 1) and 2) of

Section 4). It turns out that the abstract form of these conditions is:

P(A) > 0 implies Q(A) > 0
(26)

for every A E 1.

In the language of mathematical probability, (26) states that P is absolutely continuous

with respect to Q. The Radon-Nikodym theorem then guarantees the existence of a "den-

sity" LQ such that

P(A) = LA LQ(w)Q(dw),

from which it follows that if EpIXI < oo,

EpX = EQXLQ. (27)

LQ is called the Radon-Nikodym derivative of P with respect to Q; in the langudge of

statistics, L is known as the likelihood ratio of P with respect to Q (hence, our use of the

notation L). The derivative LQ appears in all the main formulas of Sections 2 through 4

(e.g. (8), (16), (20)), in the form of the r.v.'s L,,,LT, etc. appearing there.

Although condition (26) was the one used to construct sampling distributions in Sec-

tions 2 through 4, it turns out that importance sampling can be generalized somewhat

beyond (26). Assume that Q satisfies:

EpIXII(A) > 0 implies Q(A) > 0
(28)

for every A E I.

Since the set of A's for which EpIXII(A) > 0 is contained in the set for which P(A) > 0, it

follows that (28) is a weaker condition in Q then (26). By the Radon-Nikodym theorem,

(28) suffices to guarantee existence of L such that

EpXI(A) = L(w)Q(dw). (29)
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In this case, a f EQLJ. Here, L has no interpretation as a likelihood ratio.

To compute the efficiency of an importance sampling estimator based on (29), we let 6

denote a r.v. representing the computation time required to calculate L under sampling

distribution Q. If r(t) is the estimator available after t units of effort have been expended

(see (5) and (6) for an explicit description), then EQ(fl + L*1) < oo implies that

tl/2(r(t) - a) = o(Q)N(O, 1)

where a2(Q) = EQ -varQ L . Ideally, we would like to choose Q to minimize a 2 (Q). This

problem is difficult to solve mathematically since the quantity EQ8 depends not only on the
"complexity" of the sampling distribution Q but also on the efficiency of the programming

implementation. As a result, most analyses of this problem disregard the EQp term, and

concentrate only on reducing the variance varQ L .

To minimize varQ L subject to (29), observe that the Cauchy-Schwartz inequality yields

varQL = EQ(L )
2 

-
2

(EQ IL )2 -

- EQ(LQ) 2  a2 = varQL*

where Q(A) = EpIXII(A)/EpIXJ. Hence, Q is the sampling distribution which minimizes

varQ L . This result is well known in the case where 0l = R (see, for example, Rubinstein

(1981), p. 122), where it is often pointed out that Q is not implementable practically

since its construction requires knowledge of EpIXJ, which is generally unknown. The same

proviso holds here, of course. Instead, one can exploit this result by choosing Q to minimize

Q as closely as possible. Hence, the sampling distribution Q should inflate the probability

mass assigned by P where Ilx is large, and deflate it where fXl is small. Accomplishing this

in practice is hard, however, and must generally be guided by sophisticated theory (see

the "large deviations" applications of Section 7).

The form of the optimal Q does provide us with some limited information of general

applicability. Specifically, Q(A) is positive only when EpIXII(A) > 0. This implies that

if P(,j) = 0, then any Markov probability used for importance sampling should satisfy

K&, j) = 0.

Before proceeding, it is worth noting that (27) can be viewed in a somewhat different

way. Given a sampling distribution Q, (27) shows that for every r.v. X defined on 0l and
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every probability P which is absolutely continuous with respect to Q, (27) holds. Thus, by

generating a sample point w in n under Q, we s obtain an unbiased estimate of

every expectation a = a(X, P) of the form a(X, P) = EpX. For example, when one generates

a path of a Markov chain having transition matrix PI, one is actually obtaining unbiased

sampling information about every Markov chain having transition matrix P2 for which

P2(i,i) = 0 whenever Pj(i,j) = 0.

We will now show that when Q is chosen to satisfy the stronger condition (26) (as

occurs in Sections 2-4), importance sampling can be combined with the method of control

variates to further reduce the variance. The main observation is that by setting X = 1 in

(27), we find that EQL = 1. Hence, Z(A) = XL- (L-1) has expectation a under Q. The basic

theory of control variates then shows that if EQ(X 2 + 1)L2 < oo, then varQ Z(A) is minimized

by choosing A = A*, where

A= covQ(XL, L)/varQL

(assuming varQ L > 0), in which case varQ Z(A') = varQ XL - [covQ(XL, L)]2 /varQ L. Of course,

in a practical implementation, A* must generally be estimated from sample data.

One more point must be emphasized here. The use of importance sampling can fre-

quently lead to estimators with infinite variance (see Proposition 6 for example); finite

variance must not be taken for granted in this setting. This occurs despite the fact that

importance sampling gives rise to estimators with finite first moment whenever the original

estimation problem has finite expectation. Hence, if the sampling distribution Q is poorly

chosen, importance sampling can lead to an estimation procedure with exceptionally poor

convergence properties.

As discussed above, sampling under Q provides information about all probabilities P

which satisfy (26). As we shall now see, Q can often also be used to generate sample

outcomes in n having distribution P. Suppose the likelihood ratio LQ is bounded by a

(deterministic) constant M. If W is a random point in n generated under Q and if U is an

independent uniform (0, 1) r.v., then

Q{W E dwIMU < L(W)J = EQ Eq((W E dw,MU _ L(W)IW}
EQEQ{I(MU < L(W)IW}

= EQI(W E dw)L(w) = P(dw).

Thus, conditional on the event {MU < L(W)}, W has distribution P. This is the method of

acceptance-rejection extended from n = R to arbitrary n (see p. 50 of Rubinstein (1981)).
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We can illustrate the technique with an application to the M/M/1/oo queue with time-

varying arrival and service time rates. Specifically, we suppose that the arrival and service
time rates at time t are given, respectively, by X(t) and 4(t) where 0 < X(t), p(t) K K. Our

goal is to generate sample paths of an M/M/1/oo queue with these rates up to time S,,
where S. is the entry instant of the (n + 1)'st state visited.

If Q is the probability corresponding to a queue in which the rates are set equal to A

and M for all t > 0, then Bremaud (1981), p. 168, shows that

where Q(s) is the queue-length at time a, An = < n : S is an arrival epoch), and Ac=

{1,...,n}-An . If A,# are lower bounds on the functions A(.), p(.) over [0,t], it follows that LQ <

K 2"/(A,)"; the above acceptance-rejection method then applies to this problem. Hence, the

time-varying queue previously described can be generated from trajectories of a "standard"

M/M/1/oo queue. We should caution, however, that this would be an inefficient way of

simulating a time-varying queue, since a (very) large proportion of the "standard" paths

might be rejected. Competing methods for generation of sample paths for M/M/1/oo queues
with time-varying arrival and service rates appear in Lewis and Shedler (1979 a, b).

6. IMPORTANCE SAMPLING: SECTIONS 2-4 REVISITED

We now wish to apply some of the ideas described in Section 5 to the processes dis-

cussed in Sections 2-4. We start by trying to determine the probability Q which minimizes

varQ L (see (29)), when P is a Markov probability associated with a discrete-time chain.

Specifically, suppose our task is to estimate a = Epf (Xo,...,Xn), where Ep(.) is the expec-

tation on the path space of X associated with initial distribution U and transition matrix

P. It is easily verified that the probability Q is then given by

n-1
If(io,...,in)I(io) ]1 P(ij, i+ )

Q{X = ,o,...,x. = i.) = 30)=oEp If(Xo,. ..., ,x.I

Clearly, Q is not, in general, itself a Markov probability, in the sense that there will usually

exist no initial distribution v and transition matrices K. for which Q{Xo =so,..., X. = in
1+0) 11rn- IKYij +1)

j=o K 3 (i,,+j)" Thus, the minimal variance probability Q has the additional disad-
vantage, beyond those discussed in Section 5, that Q will generally be non-Markov. The
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non-Markov structure of q suggests that generation of sample outcomes under Q will

frequently be (very) computationally intensive. A similar conclusion holds for continuous-

time chains and GSMP's.

There is one important setting, however, where the optimal measure Q is in fact

Markov. Consider the problem of estimating, for a Markov chain X and subset A, the

parameter

a = Pp (T(A) > IXo = i}

for i kA, where T(A) = inf{n > 0 : Xn E A}. Notice that a = EpI(T(A) > m) where I(T(A) > m)

takes the multiplicative form

I(T(A) > m) = fl I(X, 0 A)
k=O

Then, (30) takes the form

rn-1

Q{Xo = o, ,..., X = i,} = 6i,., rl K,(ii,i+ 1 )
j=0

where

K,(i, k) = P(i, k) Pp{T(A) > m - j - 1jXo = k}
Pp{T(A) > m- ooXO k}

for i, k A.

For a birth-death process X in which A = {b + 1, b +2,..., it is evident that Pp{T(A) >

m- 1Xo =i-1) _! Pp {T(A) > mIXo = i so K(i,i- 1) _ P(i,i- 1) for all i and j. In other words

the optimal measure Q increases the likelihood of drifting to the left. It is interesting to

also note that K,(i,k) = P(i,k) if b-il > m-j.

Further information can be obtained by analyzing the asymptotic behavior of Pp {T(A) >

mjXo = k}. Note that

Pp{X,, = t,T(A) > m(Xo = k) = G'

where G = (Gkt : k, teAc) is the matrix in which Gkt = P(k, t). Suppose X is irreducible, Ac

has finite cardinality r, and G is diagonalizable. Then,

G = B-diag(Aj,..., A,)B

is the spectral decomposition of G, where IA,[ < i (this follows from the irreducibility). If

A11 > IA21 >" .> [, then

Al'G' -- G = B-diag(1, 0,..., 0)B
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(note that A1 = j1,\ by the Perron-Frobenius theorem for non-negative matrices). Thus, it

follows that

Under these conditions, one finds that K,(i, k) -. P(i, k) A.I EL,A G*e/ . ,A. GX. Hence, the

optimal measure Q is asymptotically (for large m) time-homogeneous Markov, in the sense

that K,(i,k) -. K(ik) as m -. oo (for j fixed).

The above arguments suggest that it is frequently reasonable to reduce the vari-

ance by choosing a sampling distribution which minimizes varQLQ over the class of time-

homogeneous Markov sampling distributions. Suppose that we wish to estimate

a = Epf(Xo,...,X.)

where X = {X : n > o} is a discrete-time chain with transition matrix P and initial distri-

bution IA. If Q is the Markov probability corresponding to transition matrix K and initial

distribution v, then

varQL EQ / (XO'.. o)2  n- P(Xi, Xj+l)' .,a2
, Q/ o, ... ,A L K(Xj,X+1)-

n-I

- ) h(o,..., ' -  Kii,+) -pi
to,'! ,. ., y7=o

where h(io,...,in) = f2(io,... ,in) ( =o)I.=oP2(ij,ij+i). To find the minimizer K*,V" for

varQLQ, we observe that the n2 + n variables {K(i,j), v(i) : 1 _ i,j _< n) satisfy the con-

stfiaints K(i,j) _> 0, v(i) > 0, Fn K(i,j) = 1 (1 < i < n), j= IV(j) = 1. Applying the method

of Lagrange multipliers, we find that the optimizer K*, v" satisfies

h(io,.,in) K *(i°)- i = A , 1 < i,3fK*(i,,i,+,) g*(ij)n (io,.... .)+1

n

v~ < i< n

where the A,'s are the Lagrange multipliers and

n(io,...,in) =total number of times (i,j)

appears in path (,o,... ,in)I1/2h(i,i,.,..._ Iin) }

- '(i, j)IK'(ij'ij+,)
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By multiplying through the (ij)'th equation by the corresponding denominator, we see

that computing the K*(i,j)'s involves solving a large number of coupled equations which

are multinomial in the optimal probabilities K(ij,). As a consequence, we conclude that it

is, in general, unrealistic to expect that one can solve explicitly for the optimal Markoviarn

sampling distribution Q*.

A second important concept discussed in Section 5 is that the likelihood ratio L can

be used as a control variate. In fact, for the processes of Section 2-4, control variates

arise naturally when importance sampling is applied. To illustrate this idea, we focus on

GSMP's. We first observe that

ER p(An+x;An,e,) f k(C.+j(e); A+, e, A., en)IAo, Co ... , ,Ansn -- 1;
I q(n+ 1 Ante )EN(A.,+,.Ae*.)

this in turn implies that for k > 0,

EH(L,,+k(F, H)IA0, Co,..., An, Cn) = Ln(FH). (31)

(31) states that {Ln(F, H) : > 01 is a martingale sequence when generated under PH().

These simple observations guarantee that EgDn(i) =0, where Dn(s) = (L,+,(F, H)/L,(F, H))-

1. Hence, any of the r.v.'s {Dn(i) : n,i > 0} may be used as controls.

Even more controls can be constructed when the estimation problem takes the form

a = EF {f h(X(s))d} (32)

for some function h, with r a stopping time. In this case, Section 4 (see (23), for example)

shows that EHM = 0, where
v-i

M = -(h(AE)Ct(e')/r(Ate))(Lf(F, H) - Le(F, H)).
e=o

In fact, even more is true. Each of the summands appearing in M, namely

Me = (h(At)Ct(e;)/r(Ae, ee))(L-(F, H) - Lt(F, H))I(r > t)

have vanishing expectation with respect to EH; this follows immediately from the martin-

gale property (31). Since the single state simulation strategy of Section 4 involves a ratio

of expectations of the form (32) (for the denominator, set h = 1), we see that the controls

M, Mo, Ml,... arise naturally when steady-state simulation for GSMP's is carried out.

It is to be expected that the control variates described here will yield at least a moderate

increase in the efficiency of importance sampling methods for GSMP's.
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V- 

7. IMPORTANCE SAMPLING: THE PARAMETRIC THEORY

With the exception of our brief discussion of the probability distribution Q in Section

5, we have concentrated primarily on describing the basic implementation of importance

sampling in a stochastic simulation context, without saying much about how to actually

choose the new sampling distribution Q. In this section, we briefly address this difficult

problem. We shall assume that the goal is to estimate a = EpX, when the probability

distribution P can be embedded in a parameterized family of distributions Pe (i.e. P = Po

for some Oo in the parameter set). Our goal is to select o" to maximize the efficiency

of importance sampling. By the central limit theorem of Section 5, this is equivalent to

requiring that we choose 8" to minimize

a 2(8) = e6 -vareXL(6),

where Eq(.) is the expectation corresponding to Pe and L(O) is the likelihood ratio of Po

with respect to Pg.

To give some idea of the large variance reductions possible, consider the problem of

estimating

= Ep f(Xo..., x (A))

where r(A) = inf(n > 0: XeA} with A = +t. 1,...) and X is a Markov chain with transition

matrix P. Suppose P takes the form

P(o, j) = 81i

P(i,j) = p6 i.-I + q6j.j+1 for i > 1.

Such a P can be embedded in the parameterized family P(8), where

P(8, o, ) = 61j

P(6,i,j) = O6.,_. + (1 - 0)6,.i+1 for i > 1.

Note that Eok5 is independent of 0. Since the chain at time r(A) has taken b - i more steps

to the right than steps to the left, it follows that

L(O) =(E) b-Xo) (q)

Thus, if 0 = q, L(q) = (q/p)b-Xo and hence

Var,{(Xo,..., x,(A))Xo = i}

= EIq( 2 (Xo,.. ,X,4 A))L 2 (q)iXo -i) -
2

= (q/p)b-iEp(f 2 (Xo,.. ,X(A))IXo = i) - a 2 .
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So, if p - q or b 3o i, the potential computational savings obtained by using importance

sampling with 0 f q are enormous.

This example indicates that the additional effort required in finding an efficient 0 at

which to simulate can have a significant payback. One general approach for accomplishing

this is to use stochastic approximation (e.g. the Kiefer-Wolfowitz method) to minimize

o2(0). Since o2(0) may be infinite over a substantial subset of the parameter space (see

Section 8), this can make a stochastic approximation algorithm highly unstable. A second

general approach to selecting an efficient 0 involves using the mathematical theory of

probability to select a a which will be close to e'; the relevant mathematics needed is the

theory of "large deviations". (See Billingsley (1979) for a brief description.) Consider, for

example, the problem of estimating

a = a(w) =_ P{W > W) (33)

where W is the steady-state waiting time of a customer in a 0I/G/1/oo queue having arrival

and service time distributions FA and Fs, respectively. Clearly, if w is large, this tail

probability will be expensive to calculate to a reasonable degree of relative accuracy.

We now embed P in a parametric family. Assume that FA, Fs have moment generating

functions A, os that converge in a neighborhood of zero. Let
FA (0, dz) = eoZFA (dz)/OPA (0)

Fs(0, dz) = ellFx(dz)/s(0);

then FA(8), Fs(8) are the distribution functions of non-negative r.v.'s, and can be viewed as

the inter-arrival and service Lime distribution for the Ps system.

To select the best possible 9, let P() = SS(9A(-). Note that -p is the moment
generating function of the difference between a service time r.v. and an (independent)

inter-arrival time r.v. Because we need the mean inter-arrival time to be greater than the

mean service time for the queue to be stable and (33) to make sense, it follows that s has

a negative derivative at 9 = 0. Because of the convexity of p, it is then evident that any

root 9 # 0 of sp(O) = 1 must be positive and unique. Assume such a root 01 exists.

To apply these ideas to (33), we need to use the well-known fact that

a=P m a x Tk>tu} (34)

where To = 0;T = =,(S - Ak), and the Ah,Se's are independent copies of the arrival and

service time r.v.'s. Note that (34) is equal to

a = P(w)< 0o) (35)
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where r(w) = inf(n >0 0: T,, > w).

We now apply importance sampling to (35) by using inter-arrival and service time

distributions FA (01), Fs (81 ) respectively, rather than FA, Fs. Then

P{r(w) < oo) = Po~r(w) < o) = EoI(r(w) < oo)L,(,)(09)

where L,(.)(01) is the likelihood ratio given by

It is easily verified that E., (S - A,) > 0 and hence T(w) < Co occurs with probability one

under Pe,. We conclude that

a(w) = Ee, L,(w,)(01). (36)

Siegmund (1976) argues that importance sampling, based on Pe, as in (36), is asymptoti-

cally more efficient (as w -. co) than any other choice of 6 when estimation is based on the

representation (35). Asmussen (1985) shows that the choice a, continues to be the optimal

choice in heavy traffic conditions where EOA P EoS. The efficiency increases that are typical

when this "large deviations" idea is applied can be enormous; Asmussen (1985) reports

efficiency increases on the order of a factor of 3 to a factor of 400. Work on extension of

these ideas to queueing networks is active; see, for example, Cottrell et al. (1983), Parekh

and Walrand (1986), Weiss (1986), and Anantharun (1987). This area of work holds great

promise for development of importance sampling methods permitting substantial efficiency

increases.

8. RESPONSE SURFACE ESTIMATION USING IMPORTANCE SAM-

PLING

In many applications, a parametric embedding of the type described in Section 7 arises

naturally. For example, in the study of queueing systems, one is frequently interested in

understanding the behavior of the process as a function of the probability law Pe imposed

on the queue, where P corresponds to the queue dynamics under service rate 0. Since the

family (P) so obtained often satisfies (26) (i.e. P.(A) > 0 implies Pe,(A) > 0 for 6o $ 0),

importance sampling seems natural in this context. In particular, one can then estimate

the expectation of X under Pe by simulating X under P00 for some fixed 80. This suggests

that one can use importance sampling, under distribution P,, to simultaneously estimate

the entire response function

c(0) = EpX.
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In a queueing context, this idea raises the possibility that one can estimate queue

performance over an entire interval of service time parameters a by simulating the queue

at a particular ao and applying importance sampling appropriately.

To describe the idea precisely, let X be a real-valued r.v. defined on a sample space fl

(with a-field )7). Suppose {P# : 0 E [a, b]} is a family of probabilities on (fl, 7) which satisfy:

P#(A) > 0 implies Q(A) > 0
(37)

for every A EY and Be [a, b].

In many applications, (37) is satisfied with Q = Pe,, for some 0o E [a, b]. Then, it follows

from Section 5 that for every 0 E [a, b], there exists L(O) such that

EpX = EQXL(O).

Hence, if Ep. IXI < c for all 8 r [a, b], it follows that

ae(O) = EXL(O). (38)

To estimate the "response function" a(.), (38) suggests that one generate independent

replicates fXLi(a) :9 E [a,b]} of the random process (XL(0) : 0E [a,b]). The function a(.) can

then be estimated via

= n XkL(.). (39)
k=1

To illustrate this idea, we now specialize to the discrete-time Markov chain setting.

For each 8 e [a, 6i, let P(a), p(O) be an associated transition matrix and initial distribution,

respectively; the parameter 0 might correspond, for example, to a branching probability, in

which case P(P) is the transition matrix associated with branching probability 8. Suppose

that the goal is to estimate the expectation of f(Xo,X,,..., X.) under transition matrix P(O)

and initial distribution 1(o), as a function of 0. If A(O) = {(i,j,k) : P(P,s, j) > 0, U(O,k) > 0} is

independent of 0, then we can estimate c(-) via

E f (XO ,. .. ,Xkft)Lflk(P(*), P(6o)) (40)= 1o

where

L.k(p(), P(RO)) = (o, Xko) Y=' P(o,XA,,Xk,.+,)
IA(0,-A;O 1 P(80, Xkj,X,+l)

and ((Xko,Xkj,...,Xk,) : k > 0} is a sequence of i.i.d. copies of (Xo,X 1,...,X,,) generated

under P.. The attractive feature of this estimator is that the global behavior of a(.)
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may be estimated by simulating the Markov chain locally (at eo), so that one avoids the

enormous computation involved in simulating the system at a grid of pionts e , 02,.. ., e.

While it is true that a.(a) --+ a(0) a.s. for each 9 E [a,b] if Ep, IXI < oo, one is generally

more interested, in the current function estimation context, in studying

,,(a,b)- sup

The quantity en(a,b) describes the global behavior of a.(.) as an estimator of the function

a(.) over the interval (a,b).

Theorem 6. Suppose that L(O) is continuous in 0 a.s. on [a, b], so that M = M(a, b)

max{L(O) :0 E [a,b]} < co. If EIXI -M < oo, then e,(a,b) --. 0 a.s. as n -- o.

This result, which states that &,(.) approximates a(.) uniformly well over the interval

[a,b], is an immediate consequence of Theorem 8.1, p. 256, of Parthasarathy (1967).

Returning to the Markov chain setting described above, assume that P(O), p(O) are con-

tinuous in 9. Since f is automatically bounded (S is finite), it follows that Elf (Xo, X1 ,..., Xn)[

M < o for every n > 0 and all intervals [a,b]. Hence, dn(.) -- a(.) uniformly on bounded

intervals a.s.

The situation is more complicated, however, when steady-state estimation is involved.

As discussed earlier, we suggest using regenerative simulation in this case (see Proposition

2).

As discussed in Proposition 2, it is evident that

Ep(oo){YL,(P(.),P(Oo))jXo = 4} u(.)
Ep,(o,) {rL,(P(.),P(Oo)) IXo = i =10

To estimate a(.) uniformly well over an interval [a, b], it suffices to uniformly estimate u(.), f(-)

over the interval. To apply Theorem 6 to u(.), observe that

IY. .max(L,(P(O), P(0o)) : Oe[a,b]} i[hii • TK(a, b)' (41)

where Ilhll = max{ h(i) : ieS} (h is the steady-state functional under consideration), K(a, b) =

max{P(O,i, j)/P(Oo,i, j) : P(Oo, i, j), Pe[a, b]). Note that the expectation of the right-hand side of

(41) is just K,(K(a,b))lIlhil, where K1(z) = Ep(#o){rz'lXo - j}.

Proposition 6. If 0 < Ekki P(Oo,j, k) for all j E S (S finite), then there exists zo such that

A: (z) o for z > zo.
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Thus, if K(a,b) > so, the bound (41) becomes infinite. This suggests that if K(a, b) is

large, am(.) may not approximate a(.) uniformly well over [a, b]. Of course, K(a, b) will tend

to be large, for most parameterizations P(e), when b-a is big. Hence, steady-state response

function estimation appears to behave poorly when the interval [a, b] under consideration

is too large.

This conclusion is also suggested by the following result. For the proof, see the next

section.

Proposition 7. If inf{X ~ ~ 2( :j G)> 1, and > o for all j, then varp(o,)L,(P(O),

P(80 )) = 00.

9. COMPUTATIONAL AND EMPIRICAL RESULTS

Whenever new simulation methodology is proposed, it is always helpful to be able to

find the theoretical values for quantities being estimated. In this section we shall discuss

the relevant theoretical values in the context of the steady-state estimation problem for

discrete-time Markov chains.

Suppose that X = {X,, : n > 0) is an irreducible finite-state Markov chain with transition

probability matrix P = {P(i,j)) and state space E = {0,1,..., N}. Assume we wish to estimate

n -1o kn
aEp Jim 47h(Xk)

for some given h : E -. JR. As indicated in Section 2, this problem can be attacked using

the regenerative method. We shall use the state 0 as a "return" state in the regenerative

method and set
=inff(n>1I:X,=0} and
1'-1

Y= Zh(xk).
k=O

Standard regenerative theory yields a = Ep{YIXo = 0}/Ep(rlXo = 0). If we now switch to

a new transition matrix K (satisfying the conditions below equation (7)), we see from

Proposition 2, that we also have

EK(YL, IXo = 0)
SEK{rL, Xo =0)'

where L, = L,(P, K) as in Proposition 1. From Proposition 1 we know that

Ep{YIXo = 0) = EK{YLIXo = 0) and

Ep{tXo = 0) = ErrL,IXo = 0).
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Let P denote the matrix obtained from P by replacing P(0, j) by 0 for all j, E Z. Then from

standard theory (Hordijk, Iglehart, Schasaberger (1976)), we know that

Ep{(YIXo = 0)1 [(1 - oP) 1j and

Ep (rIXo = 0)} (1- OP) 1J,

where e is the vector of all ones, h is a vector with components h(i) (i E E), and [ Jo denotes

the 0 component of the vector.

To compare the efficiency of estimating a under K versus P, we use Theorem 2. Assume

that the computational effort to generate a cycle is proportional to the length of the cycle,

so fit) = r. The variance of the limiting normal when a is estimated under P is given by

Ep{(Y - ar)2jXO = 0) (42)
EprlXo = 0)

whereas if a is estimated under K, using the ratio representation given by Proposition 2,

then the appropriate variance is

EK{ (y - ar)2 L2(P, K)IXO = 01 EK{rIXo =01 43
(EK{TrL, (P, K) XO = 0})2

To calculate the four terms appearing in (42) and (43), only the term EK{(Y - a'r)2

L2 (P, K) IXo = 01 presents something new. (Recall that EK {rL, (P, K)IJXo = 01 = Ep {rlXo = 0).)

The other three terms can be handled using the methods in Hordijk, Iglehart, Schasaberger

(1976). Calculating this new term is a formidable job and in fact it may be equal to +00.

We begin by computing the quantity

a3 = EK{(L'(P, K) IXo =j)

Note that
00

a3 E EK{L2(P, K)I(,r = O)Xo = i}
e= I

= p 2 (io'i 1 ) p2 (it,,se)

io, i1=0
00

= 
1'-b)j

t= I

where C =(Cke),b =(be) and Cfe = p 2 (k,t)/K(k,t) for t 0 ,Cko = ,be- P2 (t,0)/K(t,0). Hence,

we can compute the ai's by solving for

a=Z C"b.
r=0
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Note that a satisfies a = Ca + b. If a in finite, then (I - C)a = b, so that if I - C)-I exists, a

must equal (I- C)- 16. Thus, even when (I- C)-1 exists, we are still faced with the problem

of distinguishing when a is finite, so that a = (I - C)-Ib.

Proposition 8. Assume C > ,a = o C'b, and (I - C)-1 exists. If (I - C)- > 0, then a is

finite and equals (I - C)-Ib. Furthermore, (I - C)- > 0 if and only if the spectral radius of

C is less than one.

A sufficient condition for the spectral radius of C to be less than one is that

N
max E C

k <1
j#8E k <

or, in our setting

maxE P2(j, k) <m. k* K(j, k) < 1

Similarly, it is easily verified that a sufficient condition for E= ' = oo is that

N
min E cjk > 1

k=0

or omin~ Ep 2 (j, k) >
k" o K(j, k)

This observation basically proves Proposition 7.

To compute the variance term (43), we need to compute the term

d, = EK {( gX) L2 (P, K)IXo=3} (44)

where g(.) = h(.) - a. Expanding the square in (44) and conditioning on the value of X

leads to
d, = g2 (j)EK {L 2(P, K)Xo = j)

P2 (j, k) 2x --
+ 2g(j) K()EE{Z g(,)L(P, K)jXo = k

k#0

So, d satsifies d = 1 + Cd, where Ck, = P2 (k,t)/K(k,t) for t $ 0, CKo = 0, and

b; = g2 (j)EK {L 2(P, K)IXo - j)
p2 (j,k) ,-

+2g(j) P (,k)EK { g(X,)L2(PK)lXo = k}.
, K (j, k) =
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This system of linear equations has the same structure as that derived for the EK{L2 (P, K)I

Xo = Wi}'s discussed above. Finally, an analogous system of equations can be obtained for

the unknown term

EK g(X,)L1(PK)Xo = k}

appearing in b',. The equations for the di's can then be solved to calculate the variance

term (43).

At this point we have only developed one numerical illustration of importance sam-

pling for discrete-time Markov chains.' The original P matrix (corresponding to an (s, S)

inventory model) is given by

1/3 1/3 0 2/3
SI1/3 0/ 0 1/31I

=1/3 1/3 1/3
0 1/3 1/3 1/3

with state-space E = {1, 2,3, 4}. We were interested in simulating to estimate rn4 = 0.347838.

The K matrix used in the importance sampling is given by

0.476 0 0 0.5241

0.311 0.476 0 0.213
K 0.206 0.319 0.475 0

0 0.233 0.233 0.534J

Based on a simulation of 3000 4-cycles, we found an estimate of 0.319 (0.540) for the term

Ep{(Y - Cr) 2IXo = 4} (EK{(YL, - arL,)2 IXo = 4). We can compute EK{rXo = 4} (Ep{rlXo = 4)

to be 2.8749 (3.0625). This leads to a value for the ratio, R2 , of (43) to (42) of 0.745. Using

the alternate method proposed in Proposition 3 leads to a value for the corresponding R2

ratio of 1.278. As indicated in Section 2, the asymptotic efficiency of importance sampling

does depend on the return state used. For this example, the R2 values for the first method

using states 1, 2, and 3 respectively were 1.615,1.568, and 2.153. For the second method

the corresponding values were 1.822,1.729, and 2.069. The fact that these values were larger

than 1 should not be surprising, since the K matrix was specifically chosen to do well for

the return state 4.

In conclusion, we need to obtain much more computational experience with importance

sampling. In particular better methods for selecting the Q matrix are needed.

We are grateful to Scott Schulz for providing this numerical example.
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APPENDIX

Proof of Proposition 1: Note that

Epf (Xo,... ,Xr) = Epf (Xo,... ,Xh)I(T = k) (Al)
k=o

Since T is a stopping time, f(Xo,...,Xk)I(T = k) = fI(Xo,...,Xk) for some function !k. By

(8),

EpIK(Xo,..., Xh) = Ek(Xo,..., X)Lh(P, K) (A2)

Combining (Al) and (A2), we obtain

Epf (Xo,... , XT) = E EKf(Xo,..., X)I(T = n)Ln(P, K)

= EKI(Xo,.Xr)LT (P, K).

Proof of Proposition 6. Let p,(z) = Ep(e0o{z)'Xo = j). By conditioning on X1, we find

that

ip~)= ZP(Go,M) + ZZP(9ojk)Pk(z)

i.e. p(z) = a(z) + C(z)V(z). Since C(z), v(z), (z) > 0 for z > 0, it follows that jo(z) >

E,'o C"()a(z). Also, for z > zo = 1/mini Zk,, P(Oo,j, k),

min Ci,&(Z) >1

which implies that C(z)b - co as k -. co. Since a(z) > 0, it follows that 9(z) = co for z > zo.

Proof of Proposition 8. Since C > 0, it is evident that E^ Cj (I - C) = I - C"' < I.
Since (I-C)- > 0, E= 0 C < (I-C)-. By letting n - co, it follows that E=O C < (I-C).

Hence, a < co and (as argued in Section 9) a = (I - C)-b.

This argument also proves that if (I - C)- 1 > 0, then C' -. 0 and i -. co; the fact that

C' --. o is equivalent to the spectral radius of C being less than one. For the converse, note

that if C' - 0, it must necessarily tend to zero exponentially fast, so that 0 < Cjfo ¢ < co.

But it is easily verified that Tf Co(I - C) = I so that (I - C)- = E=o c < co.
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